173 research outputs found

    Coexistence of long-range order for two observables at finite temperatures

    Full text link
    We give a criterion for the simultaneous existence or non existence of two long-range orders for two observables, at finite temperatures, for quantum lattice many body systems. Our analysis extends previous results of G.-S. Tian limited to the ground state of similar models. The proof involves an inequality of Dyson-Lieb-Simon which connects the Duhamel two-point function to the usual correlation function. An application to the special case of the Holstein model is discussed.Comment: 12 pages, accepted for publication in J. of Phys.

    Proof of phase separation in the binary-alloy problem: the one-dimensional spinless Falicov-Kimball model

    Get PDF
    The ground states of the one-dimensional Falicov-Kimball model are investigated in the small-coupling limit, using nearly degenerate perturbation theory. For rational electron and ion densities, respectively equal to pq\frac{p}{q}, piq\frac{p_i}{q}, with pp relatively prime to qq and piq\frac{p_i}{q} close enough to 12\frac{1}{2}, we find that in the ground state the ion configuration has period qq. The situation is analogous to the Peierls instability where the usual arguments predict a period-qq state that produces a gap at the Fermi level and is insulating. However for piq\frac{p_i}{q} far enough from 12\frac{1}{2}, this phase becomes unstable against phase separation. The ground state is a mixture of a period-qq ionic configuration and an empty (or full) configuration, where both configurations have the same electron density to leading order. Combining these new results with those previously obtained for strong coupling, it follows that a phase transition occurs in the ground state, as a function of the coupling, for ion densities far enough from 12\frac{1}{2}.Comment: 22 pages, typeset in ReVTeX and one encapsulated postscript file embedded in the text with eps

    Characterization of the Spectrum of the Landau Hamiltonian with Delta Impurities

    Get PDF
    We consider a random Schro\"dinger operator in an external magnetic field. The random potential consists of delta functions of random strengths situated on the sites of a regular two-dimensional lattice. We characterize the spectrum in the lowest N Landau bands of this random Hamiltonian when the magnetic field is sufficiently strong, depending on N. We show that the spectrum in these bands is entirely pure point, that the energies coinciding with the Landau levels are infinitely degenerate and that the eigenfunctions corresponding to energies in the remainder of the spectrum are localized with a uniformly bounded localization length. By relating the Hamiltonian to a lattice operator we are able to use the Aizenman-Molchanov method to prove localization.Comment: To appear in Commun. Math. Phys. (1999

    Ground States and Flux Configurations of the Two-dimensional Falicov-Kimball Model

    Full text link
    The Falicov-Kimball model is a lattice model of itinerant spinless fermions ("electrons") interacting by an on-site potential with classical particles ("ions"). We continue the investigations of the crystalline ground states that appear for various filling of electrons and ions, for large coupling. We investigate the model for square as well as triangular lattices. New ground states are found and the effects of a magnetic flux on the structure of the phase diagram is studied. The flux phase problem where one has to find the optimal flux configurations and the nuclei configurations is also solved in some cases. Finaly we consider a model where the fermions are replaced by hard-core bosons. This model also has crystalline ground states. Therefore their existence does not require the Pauli principle, but only the on-site hard-core constraint for the itinerant particles.Comment: 42 pages, uuencoded postscript file. Missing pages adde

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    A (p,q)-deformed Landau problem in a spherical harmonic well: spectrum and noncommuting coordinates

    Get PDF
    A (p,q)-deformation of the Landau problem in a spherically symmetric harmonic potential is considered. The quantum spectrum as well as space noncommutativity are established, whether for the full Landau problem or its quantum Hall projections. The well known noncommutative geometry in each Landau level is recovered in the appropriate limit p,q=1. However, a novel noncommutative algebra for space coordinates is obtained in the (p,q)-deformed case, which could also be of interest to collective phenomena in condensed matter systems.Comment: 9 pages, no figures; updated reference

    Geometric expansion of the log-partition function of the anisotropic Heisenberg model

    Full text link
    We study the asymptotic expansion of the log-partition function of the anisotropic Heisenberg model in a bounded domain as this domain is dilated to infinity. Using the Ginibre's representation of the anisotropic Heisenberg model as a gas of interacting trajectories of a compound Poisson process we find all the non-decreasing terms of this expansion. They are given explicitly in terms of functional integrals. As the main technical tool we use the cluster expansion method.Comment: 38 page

    Sharp Bounds on Generalized EXIT Functions

    Get PDF

    Griffiths Kelly Sherman correlation inequalities: a useful tool in the theory of error correcting codes

    Get PDF
    It is shown that a correlation inequality of statistical mechanics can be applied to linear low-density parity-check codes. Thanks to this tool we prove that, under a natural assumption, the exponential growth rate of regular low-density parity-check (LDPC) codes, can be computed exactly by iterative methods, at least on the interval where it is a concave function of the relative weight of code words. Then, considering communication over a binary input additive white Gaussian noise channel with a Poisson LDPC code we prove that, under a natural assumption, part of the GEXIT curve (associated to MAP decoding) can also be computed exactly by the belief propagation algorithm. The correlation inequality yields a sharp lower bound on the GEXIT curve. We also make an extension of the interpolation techniques that have recently led to rigorous results in spin glass theory and in the SAT problem

    The flux phase problem on the ring

    Full text link
    We give a simple proof to derive the optimal flux which minimizes the ground state energy in one dimensional Hubbard model, provided the number of particles is even.Comment: 8 pages, to appear in J. Phys. A: Math. Ge
    corecore